

Tendances, problématiques et solutions

Des partenaires de nature à vous aider

Ingénierie des sols et matériaux Géoenvironnement Toiture et étanchéité

TECHNIQUES DE CARACTÉRISATION ET MÉTHODES DE PRÉLÈVEMENT INNOVATRICES

Atelier no 1

Caractérisation des sols et de l'eau souterraine

Que recherche-t-on lors d'une caractérisation?

- Facilité
- Rapidité
- Réduction des coûts
- Conformité
- REPRÉSENTATIVITÉ

Techniques innovatrices?

Techniques innovatrices

Atelier no 1:

- Technique d'échantillonnage des COV dans le sol
- Technique d'échantillonnage passif des COSV dans l'eau souterraine
- Systèmes de détection in situ

Vue d'ensemble

- 1. Échantillonnage des COV dans les sols
 - Perte des COV
 - Méthode 5025A et son utilisation
- 2. Échantillonnage passif des COSV dans l'eau souterraine
 - Problématique des MES
 - Méthode polyéthylène et son application
- 3. Systèmes de détection in situ
 - Caractérisation physique des sols
 - Détection des contaminants

Échantillonnage des COV

Au Québec

Échantillonnage des COV

Quizz

La littérature rapporte que la méthode actuelle au Québec peut entraîner la perte de quel pourcentage des COV initialement présents dans le sol ?

- a) 20 %
- b) 45 %
- c) 75 %
- d) 90 %

90 %

Causes des pertes de COV

- Exposition à l'air lors de l'échantillonnage
- Désagrégation de la structure du sol favorisant le contact avec l'air et des chemins préférentiels
- Tassement lors du transport formant un espace d'air «head space» dans le contenant
- Bris du couvercle
- Manque d'étanchéité du contenant par la présence de particules de sols sur les filets
- Exposition à l'air lors de l'échantillonnage au laboratoire

Causes des pertes de COV

Biodégration

- Surtout pour les composés aromatiques (benzène, toluène)
- Accentuée par la désagrégation de la structure du sols qui favorise un apport en oxygène
- Accentuée par la température

Méthode 5035A

Méthode 5035 EPA (1997) 5035A (révisée en 2002)

Propose différentes méthodes de prélèvement et de manipulation afin de limiter les pertes de COV.

Échantillonnage et préservation au terrain

acle

FORUM 2014 GÉOENVIRONNEMENT

Échantillonnage et préservation au terrain

Délai de conservation : 14 jours

Échantillonnage et préservation au terrain

Contenant hermétique (*En Core* ®)

Délai de conservation : 48 h

Application de la méthode 5035A

Aux Etats-Unis: 32 états

Au Canada : obligatoire en Ontario (2011) et bientôt en Colombie-Britannique (2014) et Saskatchewan

CCME – Méthode recommandée dans la version révisée du "GUIDE POUR L'ÉCHANTILLONNAGE, L'ANALYSE DES ÉCHANTILLONS ET LA GESTION DES DONNÉES DES LIEUX CONTAMINÉS" qui devrait paraître en 2014

Échantillonnage passif des COSV dans l'eau souterraine

Défi : prélèvement d'un échantillon représentatif Présence de MES dans l'échantillon affecte le résultat analytique

- Dissous + particulaire = total
 Normes et critères d'eau souterraine
 - Fondés sur la concentration des contaminants dans l'eau (dissous)

Problématique

Pour réduire l'effet des MES :

- Filtration
 - Affecte l'intégrité de l'échantillon
 - Perte de certains contaminants par adhésion au filtre
 - Non prescrit au Cahier no 3 pour les organiques
- Technique d'échantillonnage
 - Conception et développement adéquat du puits
 - Échantillonnage à faible débit
 - Échantillonnage passif par membranes de plastique (PMD)
 - Membrane de polyéthylène (PEBD)

Principe et utilisation

Le prélèvement est basé sur :

- Diffusion
 - Libre circulation des molécules solubles vers une phase adsorbante
- Affinité
 - Meilleure affinité des molécules de contaminants avec le PE qu'avec l'eau
 - Une adsorption sur la membrane jusqu'à l'équilibre

Principe et utilisation

-abo

Solubilité, coefficient de partage K_{PEW}
 et temps d'équilibre

Nettoyage et préparation

Terrain

 Bandelette de polyéthylène introduite dans le puits d'observation

 Laissée en place jusqu'à la condition d'équilibre

Labo

- Désorption et analyse
- Calcul de la concentration dans l'eau

Avantages et limites

Avantages:

- Mesure de la «vraie» concentration dissoute
- Cohérence accrue des données
- Conditions plus réelles de l'eau souterraine
- Peu de manipulations sur le terrain

Limites:

- Temps d'équilibre assez long : 30 à 120 jours
- Exclusion des colloïdes
- Ne s'applique pas à tous les contaminants

Systèmes de détection in situ

Plusieurs « nouvelles » technologies à lecture directe sont disponibles :

- Systèmes de caractérisation physique des sols
- Systèmes de détection de contaminants

Caractérisation physique

- Profilage stratigraphique/hydrogéologique du terrain
- Système composé d'une sonde multiparamètres introduite progressivement
- Lectures en continu
- Généralement jumelées avec des sondes de détection de contaminants

Caractérisation physique

Caractérisation des contaminants

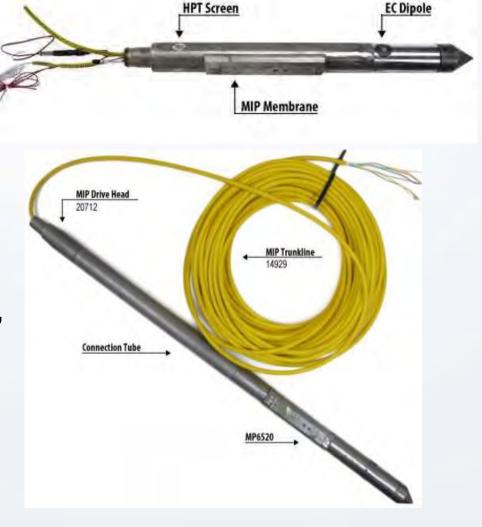
- Sonde(s) introduite(s) lors du profilage physique
- Visent des contaminants en phase libre OU en phase dissoute
- Se limitent pour le moment à des contaminants organiques :
 - Hydrocarbures pétroliers : COV, HAP, HAM, huiles
 - Résidus de charbon, goudron, créosote

Caractérisation des contaminants

Les systèmes les plus utilisés :

- Sondes à interface membranaire (Membrane Interface Probe – MIP)
- Sondes à balayage optique (Optical Screening Tools - OST)

Sonde à interface membranaire


 Capte les COV à travers une membrane chauffée

 Gaz vecteur les entraîne vers les détecteurs en surface :

> PID, FID, ECD, chromatographe gazeux

- Conductivité électrique,
 T°
- Spécifique aux phases dissoutes

Sonde à balayage optique

- Lecture directe du média
- Fluorescence induite :
 - Laser (Laser Induced Fluorescence – LIF / TarGOST)
 - Diode à émission de lumière UV (UVLED, UVOST)
- Spécifique aux phases libres

UVOST®

UVLED®

Caractéristiques communes

Peuvent être utilisés au bout :

- d'un pénétromètre à cône
- d'une tige de poussée directe à percussion (percussion direct-push rigs)
- Geoprobe
- Powerprobe
- d'une tige de foreuse

Avantages communs

- Données de caractérisation physiques et chimiques en continu (lecture directe)
- Interprétation rapide donc programme ajustable en cours d'exécution
- Distingue les zones contaminées des zones non contaminées (contaminants organiques variés)
- Cartographie rapide et précise en 3 dimensions (modélisation)
- Coûts relativement faibles pour de grands terrains avec des problématiques complexes

Limites

- Nécessitent une caractérisation préalable
- Ne donnent pas la stratigraphie détaillée
- Méthodes qualitatives et semi-quantitatives
- Interférences
- Limités aux sols meubles
- Coût (pour de petits sites)
- CALIBRATION essentielle

Les membres du comité no 1

François Aubre, Hydro-Québec

Anne Bélanger, Maxxam

Philippe Blais, Exova

Serge Hébert, Arcadis Canada

Johanne Laberge, MDDELCC

Benoit Lacroix-Vachon, Groupe Qualitas

Katie Morin, LVM

MERCI À NOS COMMANDITAIRES

LVM inc.

Inspec-Sol inc.

Maxxam Analytique

Groupe Qualitas inc.

Les Services exp inc.

Exova

Le Groupe Solroc

Qualilab Inspection inc.

Solmatech inc.

Valusol inc.

Chemco inc.

Des partenaires de nature à vous aider

Ingénierie des sols et matériaux Géoenvironnement Toiture et étanchéité

6360, Jean-Talon Est, bureau 211 Saint-Léonard (QC) H1S 1M8

Tél.: 514 253-2878 | info@acle.qc.ca

acle.qc.ca